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Abstract

Robust Reinforcement Learning deals with
problems where the transition probabilities
of the environment are uncertain or only an
approximate simulation of the environment is
available to the agent. This uncertainty can
be modeled by assuming the probabilities to
be composed of a true distribution plus some
confidence region. Using this formulation, we
give two new gradient based algorithms for
function approximators which use the Mirror
Descent Optimization technique.

1. Introduction

Reinforcement Learning (RL) refers to the broad range
of algorithms which learn goal directed optimum deci-
sion making. In RL problems, there is an agent which
interacts with an environment via performing certain
actions. To this, the environment responds by pro-
viding the agent with rewards. Each action takes the
environment from the present to a new state, and the
agent’s task is to optimize its actions so as to maximize
the net reward it receives over its lifetime.

The function computing these decisions is known as
policy. One of the standard ways to solve the RL
problem is to first learn an optimum state–action value
functionQ∗(s, a) := Eπ∗

[∑∞
t=1 ϑ

t−1rt | s0 = s
]
, which

provides the maximum expected net reward that can
be achieved from the starting state s0 by following
the optimal policy π∗. Policy function can then be
found out directly from this value function (Section
3.3). When the state space of the environment is large
(and continuous), as is often the case with practical
problems, the state value function is modeled using a
function approximator, such as a linear model or a neu-
ral network: Qθ(s, a), where θ represents the learnable
parameters of the value function.
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In this setting, a loss function is formulated which
quantifies the goodness of the state value function in
its predictions. This effectively reduces the RL prob-
lem to training this value function on the data sampled
from the environment to minimize the formulated loss
function. A popular form of optimization is gradient
based methods.

In this work, we propose new RL algorithms which
use mirror–descent (Beck & Teboulle, 2003) to learn
action–value function in the robust–RL setting (Roy
et al., 2017).

2. Background

2.1. Mirror Descent

The mirror descent algorithm (MDA) (Beck &
Teboulle, 2003) is a gradient based optimization tech-
nique which is highly suitable for large scale settings,
because its rate of convergence is weakly dependent on
the dimensionality of the problem being solved.

Mirror descent can be viewed as a generalization of
the simple gradient descent algorithm. Simple gra-
dient descent works by minimizing the quadratic ap-
proximation of the function (being optimized) at the

current point: xt+1 = arg minx

[
f(xt) + ∂f(xt)

>(x −

xt)+ 1
2‖x−xt‖

2
2

]
. Mirror descent replaces the squared

norm distance function, in the above iteration, with
Bregman Divergence Bψ : X × X → R+, defined by
Bψ(x, y) := ψ(x)−

[
ψ(y) +∇ψ(y)>(x− y)

]
, where ψ

is a strongly convex function. Bregman divergence is
a general class of distance functions and contains mul-
tiple distance functions as special cases (e.g. Squared
Loss: Bψ(x) = (x− y)2 for ψ(x) = x2).

Thus, the mirror descent equation is: xt+1 =

arg minx

[
f(xt) + ∂f(xt)

>(x−xt) +Bψ(x, xt)
]
, which

reduces to the following equivalent Mirror Descent up-
date:

xt+1 = ∇ψ−1(∇ψ(xt)− ∂f(xt)), (1)

where ∇ψ−1 is equal to ∇ψ∗, and ψ∗ is the Legendre
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transform of ψ defined by ψ∗(y) := maxz∈C [z>y −
ψ(z)].

MDA has been previously applied to Q–learning (Ma-
hadevan & Liu, 2012), where different p–norm func-
tions were used as Bregman divergences. This tech-
nique lead to faster convergence rate and reduced vari-
ance for Q–learning. We aim to achieve similar results
with the Robust RL framework.

2.2. Robust RL

In RL, the environment is modeled as a Markov Deci-
sion Process (MDP), with some fixed underlying tran-
sition probabilities. In Robust RL framework (Nilim
& Ghaoui, 2003), these transition probabilities them-
selves are uncertain. They may be chosen by the en-
vironment, so as to worsen the performance of the RL
agent. The goal of the agent then becomes to obtain
the maximal reward from these worst case conditions,
by choosing optimal actions.

Let T denote the space of the transition probabil-
ities, Pπ the policy space, and ct(it, at(i)) denote
the cost (needs to be minimized, in contrast to re-
ward) incurred by taking action at(i) in state it.
Then the total expected cost (under policy π and
a sequence of transition probabilities τ) is given by

CN (π, τ) := E
[∑N−1

t=0 ct(it, at(i)) + cN (iN )
]
, where N

is the episode duration and cN (iN ) is the cost of at-
taining the terminal state. The goal of the agent, is
then to find a policy π which minimizes the cost:

min
π∈Pπ

max
τ∈T

CN (π, τ).

In this framework the state value function and the pol-
icy π∗ = (a∗0, . . . , a

∗
N−1) can be found out as

vt(i) = min
a∈A

(
ct(i, a) + σPai (vt+1)

)
(2)

a∗t (i) = arg min
a∈A

(
ct(i, a) + σPai (vt+1)

)
, (3)

where i ∈ X (set of all states), A is the set of all possi-
ble actions, σP (v) := sup {p>v | p ∈ P} is the support
function of set P and P ai is the transition probability
matrix corresponding to when the agent is in state i
and has taken action a.

The above framework is extended to model–free RL
case in (Roy et al., 2017). This work poses the uncer-
tainty in transition probabilities as a model mismatch
scenario, where the agent has access to only an ap-
proximate simulation of the actual environment. The
perceived transition probabilities P ai are then modeled
as

P ai := {x+ pai |x ∈ Uai }, (4)

where pai is the unknown true state transition proba-
bility matrix from state i ∈ X to other states of X,
given the current action a, and Uai is the confidence re-
gion. The confidence region itself can be chosen to be
of different types such as an ellipsoid, parallelopiped,
etc.

The robust setting modifies the standard TD–error.
The robust TD–error is defined as :

d̃ := c(i, π(i)) + ϑvθ(i
′) + ϑσÛ (vθ)− vθ(i), (5)

where Û is the confidence interval, vθ is the parame-
terized state value function, ϑ is the discount factor, i
is the present state, i′ is the next state and the current
action is taken according to the policy π.

The Bellman operator is accordingly modified to the
Robust Bellman Operator, defined by:

(T̂πvθ)(i) := c(i, π(i)) + ϑσ
P
π(i)
i

(vθ). (6)

We initially assume that vθ is linearly parameterized
and later extend to non–linear setting in Section 3.2.
So, vθ := Φθ, where Φ := [φ1, φ2, . . . , φ|X|] is the set
of all states (represented as features φ). Let Π be
a transformation which projects its input function to
the nearest possible linear function approximator. It
is defined as

Πv := vθ = Φθ,where θ = arg min
θ
‖vθ − v‖2ξ , (7)

where v is any general function and ξ is the stationary
state distribution. Then the robust analogue of the
MSPBE (Sutton et al., 2009), Mean Squared Robust
Projected Bellman Error is defined as:

MSRPBE(θ) =
∥∥∥vθ −ΠT̂πvθ

∥∥∥2

ξ
(8)

= E[d̃φ]> E[φφ>]−1 E[d̃φ], (9)

where T̂π is the robust Bellman Operator (Eq. 6). Us-
ing these functions, we derive the MDA based robust
RL algorithms for state value function in the next sec-
tion.

3. Mirror Descent for Robust RL

3.1. State Value Function with Linear
Function Approximator

In this section, we derive our proposed MDA based Ro-
bust RL algorithms for linearly parameterized state–
value functions. We need to find θ which minimizes
the MSRPB error (Eq. 8). To do this, we first find
the gradient of this loss function, and then apply MDA
(Eq. 1) to it.
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Let µP (θ) denote the gradient of σP (v). Then

µP (θ) := ∇θσP (vθ) = arg max
y∈Φ>(P )

y>θ (10)

The gradient of the loss − 1
2∇θMSRPBE(θ) is

= −E[∇θ(d̃φ)]E[φφ>]−1 E[d̃φ]

= E[(φ− ϑµÛ (θ)− ϑφ′)φ>]E[φφ>]−1 E[d̃φ]

= E[(φ− ϑµÛ (θ)− ϑφ′)φ>]w (11)

=
(
E[φφ>]− E[ϑµÛ (θ)φ>]− E[ϑφ′φ>]

)
E[φφ>]−1 E[d̃φ]

= E[d̃φ]− ϑE[φ′φ>]w − ϑE[µÛ (θ)φ>]w, (12)

where w = E[φφ>]−1 E[d̃φ], and for brevity we write
the feature vector for kth state: φ(ik) as φ and the
feature vector corresponding to the (k + 1)th state:
φ(ik+1) as φ′.

We can now give the final form of the Robust MDA up-
date equations. We use two timescales (Sutton et al.,
2009):

wk+1 = wk + βk(d̃k − φ>k wk)φk, (13)

with robust–MDTD updates defined as (analogous to
GTD2, gradient sampled using Eq. 11)

ζk = ∇ψ(θk) (14)

ζk+1 = ζk + αk(φk − ϑφ′k − ϑµÛ (θk))(φ>k wk) (15)

θk+1 = ∇ψ∗(ζk+1), (16)

and robust–MDTDC updates defined as (analogous to
TDC, gradient sampled using Eq. 12)

ζk =∇ψ(θk) (17)

ζk+1=ζk + αk(d̃kφk − (ϑφ′k + ϑµÛ (θk))(φ>k wk))(18)

θk+1=∇ψ∗(ζk+1), (19)

where ψ is the distance generating function, ψ∗ is its
Legendre transform.

3.2. State Value Function with Non–Linear
Function Approximator

We will now generalize the above results to the case of
non–linear value function approximator. This section
closely follows the derivations given in (Maei et al.,
2009).

As before, let vθ be the value function approximator,
only this time non–linear in θ. Let M := {vθ | θ ∈
Rd} be the manifold spanned by vθ, then define the
tangent plane of M at θ by TMθ := {Φθu | u ∈
Rd}, where Φθ(i, j) := ∂vθ(i)

∂θj
is the Jacobian of vθ

with respect to θ. We use Πθ to denote the projection

onto the space TMθ (similar to Eq. 7). This modifies
the MSRPBE(θ)

:=
∥∥∥vθ −ΠθT̂ vθ

∥∥∥2

ξ
(20)

= E[d̃∇vθ(i)]> E[∇vθ(i)∇vθ(i)>]−1 E[d̃∇vθ(i)].

Let µP (θ) := ∇θσP (vθ) = arg maxy∈Φ>(P ) y
>θ and

define

h(θ, u) := −E
[
(d̃− φ>u)∇2vθ(i)u

]
. (21)

Then the gradient of the loss − 1
2∇θMSRPBE(θ) =

E[(φ− ϑµÛ (θ)− ϑφ′)φ>]w + h(θ, w). Note that, here
φ ≡ ∇vθ(i) and φ′ ≡ ∇vθ(i′).

We can now give the algorithms for the non–linear
setting:

wk+1 = wk + βk(d̃k − φ>k wk)φk (22)

hk = (d̃k − φ>k wk)∇2vθk(ik) wk, (23)

with robust–MDTD update given by

ζk = ∇ψ(θk)

ζk+1 = ζk + αk{(φk − ϑφ′k − ϑµÛ (θk))(φ>k wk)− hk}
θk+1 = ∇ψ∗(ζk+1),

and robust–MDTDC update given by

ζk = ∇ψ(θk)

ζk+1 = ζk + αk{d̃kφk − (ϑφ′k + ϑµÛ (θk))(φ>k wk)− hk}
θk+1 = ∇ψ∗(ζk+1).

3.3. Control and Learning of State–Action
Value Function

The algorithms given above, estimate the state value
function V (s). However, obtaining a policy from V (s)
is not straightforward. Therefore, the algorithms need
to be modified in a minor way (Maei et al., 2010) by
learning the state–action value functionQ(s, a) instead
of V (s).

We model the Q function (in case of a linear func-
tion approximator) as Qθ(s, a) = φs,aθ, where φs,a
represents the features composed of both the actions
taken in a state and that state itself. Then, Eq. 15
and Eq. 18 would use φk = φ(sk, ak), and φ′k =
φ(sk+1, π(sk+1)) (in case of Greedy policy such as
π(s) = arg maxaQθ(s, a)) or φ′k = φ(sk+1, a

′
k+1) +

Qθ(sk+1, a
′
k+1)∇ lnπ(a′k+1|sk+1), with a′k+1 sampled

from π(·|sk+1) (in case of a stochastic policy such as

Gibbs policy: π(a|s) = eQθ(s,a)∑
b e
Qθ(s,b)

). A similar modifi-

cation should work in the non–linear setting as well.
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4. Conclusions and Future Work

In this work, we proposed novel TD–learning algo-
rithms for Robust–RL using function approximators,
which use mirror descent as optimizer. We also showed
ways to extend the algorithms to control tasks. Mir-
ror Descent has properties which make it ideal for
application to RL, like its rate of convergence which
weakly depends on the dimensionality of the problem.
Whereas, Robust RL framework makes relaxing as-
sumptions on the knowledge of the environment tran-
sition probabilities.

Through our work, we aim to bring the properties
of mirror descent to robust RL framework. We will
implement these algorithms on various control tasks
and compare them with their gradient descent coun-
terparts. We’ll also investigate their theoretical prop-
erties.
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