
IET Research Journals

Object Sequences: Encoding Categorical
and Spatial Information for a Yes/No Visual
Question Answering Task

ISSN 1751-8644
doi: 0000000000
www.ietdl.org

Shivam Garg1 Rajeev Srivastava1

1Department of Computer Science and Engineering, Indian Institute of Technology (BHU), Varanasi – 221005 (UP) India
* E-mail: shivam.gargcd.cse14@itbhu.ac.in

Abstract: The task of Visual Question Answering (VQA) has gained wide popularity in recent times. Effectively solving the VQA
task requires the understanding of both the visual content in the image and the language information associated with the text based
question. In this paper, we propose a novel method of encoding the visual information (categorical and spatial object information)
about all the objects present in the image into a sequential format, which we call as an object sequence. These object sequences
can then be suitably processed by a neural network. We experiment with multiple techniques for obtaining a joint embedding from
the visual features (in form of object sequences) and language based features obtained from the question. We also provide a
detailed analysis on the performance of a neural network architecture using object sequences, on the Oracle task of GuessWhat
dataset (a Yes/No VQA task) and benchmark it against the baseline.

1 Introduction

Visual understanding of the world involves identification of differ-
ent objects present in a view, their properties, relationship with other
objects and many other associated details. With the recent advances
in singular tasks related to visual understanding, like image cate-
gorization [1], object detection [2] and semantic segmentation [3],
the research focus has started shifting to more open ended tasks that
require a holistic understanding of the visual content offered by a
scene. However, datasets involving just visual cues, i.e. annotated
parts of images with words and labels from a fixed sized vocabulary,
often fail to capture properties like the complex nature of the actions
being performed in the image or the inherent visual ambiguity. On
the other hand incorporating human descriptions for images into
these datasets, such as [4], [5], provides very rich and open–ended
details about images. Therefore, learning systems, when trained to
understand and automatically generate these descriptions, acquire an
in–depth visual understanding of the image. Such systems learn a
joint representation of the visual and language based modalities in
these multi–modal tasks.

One such multi–modal task is image captioning, in which the pri-
mary goal is to generate a small natural language description of
a given image. Modern machine learning techniques, to solve this
problem, involve optimization of some kind of a learning model
(such as a neural network architecture consisting of RNNs and CNNs
[6]) with respect to a quantitative loss function of the performance
of this architecture. However, coming up with a quantitative mea-
sure for the goodness of the response generated by the model for
such open–ended problems is a challenging task, because there exist
innumerably many “correct” ways to describe a single image. Visual
Question Answering (VQA) alleviates some of this problem by for-
mulating this task in form of an open–ended dialogue with respect
to the image.

In visual question answering, these dialogues are structured in
form of questions and answers. Though, the questions are allowed
to be unconstrained and open–ended, the answers are constrained to
a small set of concepts like color, object names [7] or even a simple
Yes/No [8]. This often reduces the problem of evaluating the per-
formance of the system into a simple classification task, without
diminishing the challenge of the problem. The questions can still
refer to any visual concept in the image and there exist multiple
challenges in solving a VQA task [9], such as concept ambiguity,

ambiguity in deciding the questioner’s frame of reference, incorpo-
rating common sense knowledge or even considering societal factors
like obtaining a social consensus on the answers given by an artificial
system. A successful VQA system would need to solve these sub–
tasks in order to engage in multi–modal dialogue. This way, VQA
provides a holistic approach to visual understanding.

Question Answer
Is it a liquid? No
Is it a person? No
Is it in the background? Yes
Is it on the left side? No
Is it between the people? Yes
Is it the oven? Yes

Fig. 1: A typical example in the GuessWhat dataset [8]. The hidden
object (an oven in this case) is highlighted by a green bounding box.
Following the image is the dialogue between the Questioner and the
Oracle.

In this paper we work with GuessWhat [8], a VQA dataset which
is centered on a two–player game between a Questioner and an Ora-
cle. The task of the Questioner is to find an unknown object in the
given image by asking questions related to it. The Oracle in turn, has
to answer these questions. Fig. 1 shows a sample GuessWhat game
in progress. The hidden object, an oven in this case, is highlighted
with a green bounding box. The Questioner asks polar questions

IET Research Journals, pp. 1–9
c© The Institution of Engineering and Technology 2015 1

“This paper is a preprint of a paper accepted by IET Computer Vision and is subject to Institution of Engineering and Technology
Copyright. The final version is published, and the copy of record is available at the IET Digital Library: http://dx.doi.org/10.
1049/iet-cvi.2018.5226.”

http://dx.doi.org/10.1049/iet-cvi.2018.5226
http://dx.doi.org/10.1049/iet-cvi.2018.5226

(questions that can be answered in a Yes or No) in order to find this
unknown object using visual information associated with the scene.
The Oracle has access to the knowledge about this hidden object and
its job is to answer these questions in Yes or No mode. Answering
such questions requires the Oracle to understand the various aspects
about the image and to represent all this information in a format suit-
able for a classification model. We model this Oracle using a neural
network architecture and our main contribution in this paper is the
proposal of an effective way of structuring the inherently unstruc-
tured visual information obtained from the image into a succinct
form, that can be fed into such architectures.

Contributions: We propose a simple and effective way of encod-
ing the spatial and categorical information about all the objects
present in an image into sequences. We call these sequences as
Object Sequences, and these can be passed into a neural network for
further processing. We give the motivation behind object sequences
and the algorithm to extract them from images in Section 3.1. We
experimentally compare different ways to combine the visual fea-
tures (obtained from object sequences) with the language features
(obtained from questions) into a joint embedding in Section 4.2. In
Section 4.3 we provide a detailed experimental analysis of object
sequences and benchmark their performance against the baseline for
the Oracle task [8].

2 Related Works

The first attempt at the creation of a VQA dataset was DAQUAR
[7]. It consists of 12K question–answer pairs where the answers
are constrained to colors, counts and a set of objects, and the ques-
tions are open–ended. DAQUAR is built on top of the NYU-Depth
V2 dataset [10] consisting of about 1400 RGB–D images. In [7],
a baseline was setup for DAQUAR. The authors used a generative
Bayesian model for answering the questions. They showed that the
performance of their system was heavily dependent on its visual
recognition capabilities.

In [11], the authors improved significantly upon their previous
results on DAQUAR, by using a neural network model. They exper-
imented with various approaches and found that a combination of
LSTM [12] for handling language data and ResNet [1] for visual
data gave the best results. They also created an augmentation of
the original DAQUAR dataset, called as the DAQUAR–Consensus.
DAQUAR–Consensus provides five different answers given by five
different human annotators, for each question from the original
dataset. This was an attempt to bring out the societal factors in VQA,
and thus create systems that generate socially acceptable answers to
questions. The differences in the human responses in DAQUAR–
Consensus also illustrated the inherent ambiguity in the task of
question–answering.

An extremely large VQA dataset [13] was later proposed, con-
sisting of 0.25M images, 0.76M questions, and 10M answers, with
multiple answers for each question. This dataset contains both real
world scenes and abstract cartoon–like images that can help a system
learn abstract visual concepts and also provide a controlled experi-
mental setup. This dataset was later modified [14], by associating
each question with a pair of complementary images, resulting in
different answers. The VQA dataset [13] also hosted an associated
challenge. The state of the art on this challenge was achieved by [15].
This model learned a joint RNN–CNN embedding of the input ques-
tions and image, with question guided attention modules to solve this
task.

This paper [15] also introduces the idea of bottom–up attention,
which has been discussed in detail and also applied to image cap-
tioning in [16]. Conventional attention mechanisms, [17] (in case
of image captioning), [18] (in case of machine translation), focus
on part of features based on the partially generated output related
to the final task. Bottom–up attention, instead, focuses on relevant
image regions based on just the visual properties suited for the prob-
lem, oblivious to the context provided by the task. For example,
[16] implements bottom–up attention by using a ResNet [1] based
RCNN architecture to extract features corresponding to the objects
in the image. They, then use the conventional (called as top–down)

attention to weigh these bottom–up attention derived features and
combine them to encode the image for final VQA task.

Machine learning models often resort to exploiting some kind
of bias in the questions itself, rather than using and understanding
visual cues when employed for VQA. This is a major hurdle in
training them effectively, and affects their usability afterwards. To
overcome this problem a different split of the original VQA dataset
[13] was proposed in [19]. In this new split, there are fundamen-
tally different types of questions in the training and test splits of
the dataset, which discourages such sole dependence on superficial
correlation between questions and their answers.

Another very large dataset that combines vision and language is
the Visual Genome Dataset [20]. This dataset provides dense anno-
tations on the images in form of detailed relationships between the
various objects in the image.

The VQA dataset with which we work in this paper is GuessWhat
[8]. For this dataset, the authors establish three different baselines for
the three different tasks of modeling a Questioner, an Oracle and a
Guesser associated with the dataset. The task of the Questioner is to
ask relevant questions to discover the hidden object from the image,
the task of the Oracle is to answer these questions and the task of the
Guesser is to the guess the hidden object from the list of objects pre-
sented to it after the end of above dialogue between the Questioner
and the Oracle. In [8], the joint embedding for the visual and lan-
guage features is obtained by first evaluating the image and question
features separately, and then concatenating them into a single vec-
tor. An alternate approach was presented in [21], where the language
features are incorporated in the visual recognition pipeline (contain-
ing a ResNet [1]) using their newly proposed method of Conditional
Batch Normalization, early in the process. They tested their method
on the datasets [13] and [8], and it achieved significant improvements
from the baseline results.

Such dialogue systems can also be modelled as goal based deci-
sion making tasks. In such a modelling scheme, the goal of the agent
(Questioner, Oracle or the Guesser in GuessWhat) is to take actions
in order to achieve its goal. This problem can be solved by the meth-
ods of Reinforcement Learning (RL). [22] discusses the creation of
an environment, using the previously established baseline models,
for applying deep RL to the GuessWhat dataset.

Multi–modal dialogue systems offer a much more closer view
to what artificial general intelligence (AGI) would be like. Humans
can handle a variety of modalities together, with each one strongly
linked to another. AI systems need to learn this strong correspon-
dence between the different modalities in order to be able to replicate
human behaviour and cognitive actions.

3 Methodology

3.1 Object Sequences

In this section we present the main contribution of this paper: the
method for encoding the categorical and spatial information about
the various objects present in the image into object sequences.

A typical image in the GuessWhat dataset contains multiple
objects, in addition to the one prime object that is not known to
the questioner a priori. Ideally, to answer any questions regarding
the image and this prime object, an Oracle model would require the
information about all the other objects present in the image as well.
One way to feed this information into a neural network is to use a
big CNN to extract features for the whole image. This approach was
tried in [8], using a pre–trained VGG Network [23], and didn’t even
perform to the level of relatively simpler approaches. We use object
sequences to capture this information.

We define an Object Sequence as a sequence of objects, arranged
in the order of the objects’ spatial locations in the image. Fig. 2
displays the object sequences, along X and Y axes, for that image.
The spatial locations of the objects in the image is calculated by the
centers of their respective bounding boxes.

To find the Object Sequences for a given image, first the objects’
bounding boxes and their categories need to be identified. This

IET Research Journals, pp. 1–9
2 c© The Institution of Engineering and Technology 2015

process is known as object detection and can be carried out by effi-
cient methods, such as the Region Convolutional Neural Network
(RCNN) [2]. Once object detection is done, an object sequence is
formed, one along each direction, from the object categories put
according to the spatial ordering of the objects in that direction. The
object categories are converted into word vectors using some pre–
trained word embedding like GloVe [24]. Algorithm 1 presents these
steps explicitly.

Category <Person> <Person> <Backpack> <Person> <Frisbee>

Prime Object 0 0 0 1 0

 <Frisbee>

 <Person>

 <Person>

<Backpack>

 <Person>

Object Sequence (OBJx)

O
b

je
c
t

S
e
q

u
e
n

c
e
 (

O
B

J y
)

Fig. 2: Object sequences, along X and Y axes, for an image.
The sequence is composed of the category of the objects (like
<Backpack>) and whether the object is prime or not (in form of
0 and 1). Though the prime object information is shown only on X
axis, it is incorporated in the sequences along both the axes.

Algorithm 1 Extracting Object Sequences from an image
1: Detect various objects in the image and obtain their categorical

information along with their bounding boxes.
2: Sort the detected objects along X and Y axes separately, using

the centers of their respective bounding boxes.
3: for each identified object do
4: Convert the object category into a word vector.
5: if Object is prime then
6: Append 1 to the categorical word vector.
7: else
8: Append 0 to the categorical word vector.
9: Form a separate sequence out of these categorical word vectors

for each ordering identified in Step 2.

The motivation behind this kind of encoding is that many of the
questions asked in GuessWhat dataset inquire about spatial infor-
mation. Such as the questions: “Is it in the background?” or “Is
it between the people?” from Fig. 1. Object sequences explicitly
encode information, needed to answer such questions, in their struc-
ture. Further, if the learning model is powerful enough, it may even
be able to map semantic concepts, like riding in the question “Is the
person riding the horse?”, to the relative ordering of <Person>
and <Horse> in the Object Sequence along Y axis. These object
sequences are handled by Recurrent Neural Networks (RNNs) in our
experiments as explained in the next section.

3.2 Extracting Features from Sequential Data

Once the object sequences are extracted from the image, they are
converted into fixed sized feature vectors using an RNN. RNNs are
suitable for handling sequential data. Fig. 3 shows the process of a
single RNN unfolding over the whole sequence length. An RNN has
a hidden state which keeps track of all the important and relevant
information about the part of the sequence observed till that point
in the RNN. This way the RNN is able to capture the most impor-
tant and relevant information about the whole sequence in its hidden
states.

In our experiments we use Long Short Term Memory (LSTM)
[12], which is an extended type of RNN. An LSTM is able to cap-
ture long range dependencies amongst the elements present in a
sequence.

We also use Bidirectional LSTM (BiLSTM), a kind of Bidi-
rectional RNN [25]. A BiLSTM consists of two separate LSTMs
which process the input sequence in opposite directions. Consider
the input sequence a1, a2, . . . , an. First LSTM would process it in
the forward direction from 1 to n and generate a sequence of output
state vectors o

(1)
1→1, o

(1)
1→2, . . . , o

(1)
1→n. Similarly, the second LSTM

would process the same input in the backward direction from n to
1, generating output state vectors o

(2)
1←n, o

(2)
2←n, . . . , o

(2)
n←n. Here,

o
(1)
1→k represents the output corresponding to the first LSTM’s kth

cell. The notation 1→ k in o
(1)
1→k signifies that it captures infor-

mation for the subsequence a1, a2, . . . , ak. Similarly, o(2)k←n repre-
sents the output corresponding to the second LSTM’s kth cell and
k ← n signifies that it captures information about the subsequence
an, an−1, . . . , ak. The final output of the BiLSTM is then formed
by the concatenation of these two output sequences: (o

(1)
1→1 1

o
(2)
1←n), (o

(1)
1→2 1 o

(2)
2←n), . . . , (o

(1)
1→n 1 o

(2)
n←n), where 1 is the

concatenation operator (refer Section 3.3).
All the models presented in this work, except those marked by

[Prime–embed biLSTM] (refer Section 4.3.1), use an individual
LSTM to encode sequences (both object sequences and questions)
and pick the last output state vector of the LSTM as its final output
(as shown in Fig. 3), since the last output state vector of the LSTM
encodes all the information in the sequence uptill the end.

Models marked by [Prime–embed biLSTM], use a BiLSTM to
encode Object Sequences into feature vectors. In these type of mod-
els, the object sequences don’t contain the prime object information
appended as a 0/1 bit to the categorical word vector (as opposed to
Algorithm 1). Instead, to encode the information about the prime
object, we pick the output state vector from the BiLSTM, corre-
sponding to the index of the prime object in the object sequence.
So if p is the index of the prime object in the object sequence and op
is the corresponding output state vector of the BiLSTM, op is given
by o

(1)
1→p 1 o

(2)
p←n. Now, o(1)1→p encodes information about sequence

elements from index 1 upto p and o
(2)
p←n encodes sequence infor-

mation from index n to p. This implies that the whole sequence
information is captured by the single feature vector op. In addition
to this, op also contains the position, in form of index p, of the prime
object.

LSTM

{ai}

LSTM LSTM

 a1 a2 ... an

...

output

output

LSTM

 o1 1 o1 2 ... o1 n

Fig. 3: Extraction of features from sequential data using an LSTM.
The unfolding of LSTM on the sequence {ai} is shown. The side-
ways arrows connecting two consecutive cells of the LSTM illustrate
the input of the information about the symbols observed in the past.
The output of the LSTM in our experiments is taken as the output
state vector of the LSTM cell at the last element in the sequence.

3.3 Models and Embedding Techniques

In this section we explain the different embedding techniques we
have used to combine visual and language–based features. We also
give the architecture of the neural networks used in our experiments.

The Oracle task of GuessWhat effectively reduces to a classifica-
tion problem. So the crux of the problem is to calculate an effective

IET Research Journals, pp. 1–9
c© The Institution of Engineering and Technology 2015 3

multi–modal embedding which contains both the visual informa-
tion (from the image) and the language–based information (from the
question). Put another way, given separately the visual and textual
features, we need to find a way to combine them into a single fea-
ture vector. We consider five different approaches for calculating this
embedding.

In the first three approaches, the hidden states of the LSTMs, used
for calculating features from sequential data, are initialized with zero
vectors. We display these approaches with the help of the following
equations:

Concatenation = Objx 1 Objy 1 Q (1)

Sum = W1
>(Objx 1 Objy) +Q (2)

Dot = W1
>(Objx 1 Objy)�Q (3)

where Objx and Objy are the LSTM’s output for object
sequence along X and Y axes respectively, and Q is the LSTM’s
output for the question. W1 is a weight matrix which is used to
make the dimensions of vector (Objx 1 Objy) equal to that of Q.
(Am×1 1 Bn×1) represents the concatenation of vector A with
vector B to create a vector of dimensions (m+ n)× 1. The symbol
+ represents elementwise addition of two vectors and � represents
elementwise multiplication of two vectors.

Eq. (1) refers to the Concatenation Model, also shown in Fig.
4. The other two models are the Sum Model, given by Eq. (2), and
the Dot Model, given by Eq. (3). In all three models, the extraction
of the features is done similarly. First, various visual features of the
image like object category, spatial location of the prime object and
the Object sequences of the image, along with textual features from
the Question are obtained. Then the features are combined to form
a joint visual–language embedding vector. The visual and language
features in both the Dot and Sum model are merged together via ele-
mentwise operations as mention in Eq. (2) and Eq. (3) respectively,
whereas they are concatenated together in the Concatenation Model.
Once this joint embedding vector is obtained, it is passed through a
fully connected neural network (labelled by MLP in Fig. 4) and then
a Softmax layer to obtain the final output of Yes or No.

LSTM

Question

MLP Yes/No

ObjSeqy

Cat Spatial Objx Objy Ques

LSTM LSTM

Image

ObjSeqx

Fig. 4: The Concatenation Architecture for the Oracle model. In
this model, the visual feature vector (from the image) is concate-
nated with the language feature vector (from the question) to form a
single large embedding vector. The embedding vector is then passed
through a fully connected neural network (labelled by MLP) to give
a binary output of Yes or No. (The hidden states of all the LSTMs are
initialized with zeros.) This model is inspired from the embedding
used in [8].

We call the other two models, for obtaining the embedding vec-
tors, as Sequential Models. In these models, the hidden state of the
LSTM for calculating the visual (or textual) features is initialized

with the output of the LSTM applied on textual (or visual) features.
Following equations represent these models:

SequentialObjx,y↪→Q = W2
>(Objx 1 Objy) ↪→ Q (4)

SequentialQ↪→Objx,y
= (W3

>Q ↪→ Objx) 1

(W3
>Q ↪→ Objy) (5)

where, (A ↪→ B) represents the LSTM output of B, when the
vector A is used to initialize the hidden state of the LSTM associated
with B.

Eq. (4) corresponds to the first sequential model, also shown in
Fig. 5. In this model, the hidden state of the Question LSTM is ini-
tialized with the concatenated outputs obtained from the two Object
Sequence LSTMs. The output of the Question LSTM is then taken as
the joint embedding vector. This embedding vector is passed through
an MLP and then a Softmax layer to give the final binary output of
Yes or No. Eq. (5) corresponds to the second sequential model in
which the output from the Question LSTM is used to initialized the
hidden states of both the Object Sequence LSTMs.

Question

MLP Yes/No

ObjSeqy

LSTM

LSTM

Image

ObjSeqx

MLP LSTM

Fig. 5: The Sequential Architecture for the Oracle model. In this
model, the LSTM extracted features from Object sequences of the
image are used to initialize the hidden state of the LSTM for
Questions. The features extracted by this LSTM from the Question
then represent the joint embedding vector. The embedding vector is
passed through a fully connected neural network (labelled by MLP)
to give a binary output of Yes or No. This model is inspired from the
approach taken in [6] for image captioning.

4 Results and Discussion

In this section we study the performance of Object Sequences and
different embedding techniques on the task of Oracle in the Guess-
What [8] dataset. The aim for all the models is to give an answer of
Yes/No (classify in binary classes Yes and No) given a question and
the related image (as shown in Fig. 1). We report the accuracy of this
binary classification problem in our results.

4.1 Experimental Details

We evaluate our approach on the task of Oracle in the GuessWhat
dataset, which is split into separate training (580K question–answer
pairs), validation and test splits (each consisting of 120K question–
answer pairs). GuessWhat provides these question–answer pairs on
top of 66K images from the MS COCO [5] dataset. Each image con-
sists of 2 to 20 objects with a mean of 8 objects per image. The
average length of a question is 5 words and about 96.6% questions
have a word length of less than or equal to 10 words. Further, the
answer for each question is one of Yes (46%), No (52%) or N/A
(2%) in the dataset. So to simplify the experimentation, we discard
question–answer pairs with questions whose length is longer than 10
words or whose answer is N/A. This doesn’t alter the dataset in any
significant manner.

IET Research Journals, pp. 1–9
4 c© The Institution of Engineering and Technology 2015

We extract upto three different types of object sequences. Two are
along the X and Y axes of the image. The third one, which consid-
ers the order of the size of the bounding boxes, can be interpreted
as being the object sequence along the Z axis, i.e. the depth of the
image. For extracting the object sequences from the images, we need
the information about object categories and their bounding boxes. In
this paper we acquire this information from the GuessWhat anno-
tations themselves. This way, the experiments focus purely on the
method of object sequences, avoiding any noise coming from possi-
bly erroneous visual recognition. An object detection network (like
RCNN [2]) could have been used instead with minimal changes in
the procedure of forming the object sequences.

All the words (part of the question or object categories)
are converted into word vectors of size 50, using GloVe’s
Wikipedia+Gigaword 6B dataset [24]. For handling unknown
words, we create a special word vector <UNK> which is equal to
the average of all the 50 sized word vectors present in the GloVe
dataset.

We experimented with batch sizes of {64, 256, 512, 1024}, and
found 256 to be the best in terms of computational speed and final
result accuracy. So, in all the experiments that we present here, we
have taken the batch size as 256. To batchify the sequences (both
object sequences and questions) before passing them into an LSTM,
we pad the smaller length sequences (with zero vectors at the end) to
make their length 10 (for questions) or 20 (for object sequences). We
pick the output of the LSTM at the end of the padded sequence as
the LSTM’s final output (refer Fig. 3). Though, we found in exper-
iments, done on smaller models, that picking the output state of the
LSTM at the end of the actual unpadded sequence as its final output,
as opposed to the end of the zero padded sequence, didn’t give much
improvements in the accuracy (on the downside, it lead to an increase
in training time). This illustrates that LSTMs can effectively learn to
ignore the zero vectors used to pad different length sequences.

Table 1 Accuracy results (in %) on varying the LSTM’s hidden layer size
applied to the Oracle task of GuessWhat. All the models were trained using
ADAM, with an lr = 1× 10−3 and weight decay = 1× 10−4, for 40
epochs. Training and Validation refer to the accuracy scores obtained on
the respective splits of the GuessWhat dataset. (The symbols in Architecture
column are explained in Section 4.3.1.)

Architecture (Concatenation) (Layer Size) Training Validation

Q + Spat + Cat 1 76.1 76.1
Q + Spat + Cat 2 76.0 76.5

Q + Objx,y 1 74.7 74.5
Q + Objx,y 2 74.2 73.9

We experimented with LSTM’s hidden layers size of {1, 2}. Both
the models gave comparable results as shown in Table 1. We choose
the single layered LSTM for our final experiments. We use the opti-
mizer ADAM [26] and train all the networks for 40 epochs. We
train our models on the full training split, use validation split for
hyperparameter tuning and test our final models on the test split
of the dataset. The weight decay (weighing parameter for L2 reg-
ularization) is set equal to 1× 10−5 as this gave the best results;
for comparison see the models (hidden layer size = 1) trained with
weight decay = 1× 10−4 in Table 1 and compare them with the
equivalent models trained with weight decay = 1× 10−5 in Table
3. Learning rate was chosen from {1× 10−3, 5× 10−4} depending
on whichever performed better, separately for each model. All the
networks are implemented in the deep learning framework PyTorch
[27].

4.2 Comparison of Different Embedding Techniques

In this section we compare the different techniques for obtain-
ing a joint embedding of visual and textual features as mentioned

in Section 3.3. Table 2 shows the accuracy of using different
embedding techniques on the Oracle task of GuessWhat [8].

Table 2 Accuracy results (in %) for different embedding techniques on the
Oracle task of GuessWhat. Training, Validation and Test refer to the accu-
racy scores obtained on the respective splits of the GuessWhat dataset. (The
symbols in Architecture column are explained in Section 4.3.1.)

Architecture Training Validation Test

Q + Objx,y [Concatenation] 83.2 78.9 78.6
Q + Objx,y [Sum] 81.2 78.0 78.1
Q + Objx,y [Dot] 83.4 79.6 79.5

[SequentialObjx,y↪→Q] 82.4 79.1 79.2

[SequentialQ↪→Objx,y
] 81.7 79.0 79.0

In Table 2, [Concatenation] refers to the model described in Eq.
(1), [Sum] to Eq. (2), [Dot] to Eq. (3), [SequentialObjx,y↪→Q] to
Eq. (4) and [SequentialQ↪→Objx,y

] to Eq. (5).
From this table, we can see that all the models perform closely.

Out of the first three, [Dot] performs the best, possibly due to the
non–linear nature of its operation. [Sum] and [Concatenation] per-
form equally well. This can be attributed to the fact that both involve
linear operations whose output is then passed into a fully connected
neural network (which itself has a Linear layer at its beginning). Out
of the Sequential models, first one performs better as compared to
the second one.

4.3 Benchmarking of Object Sequences

In this section we benchmark the performance of object sequences
with the Oracle baseline mentioned in [8] and run ablation exper-
iments to understand the relative importance of each constituent
feature in forming Object Sequences. We first explain Tables 3, 4
and 5 and then give a discussion on the results obtained.

4.3.1 Results: The Architecture column in Tables 3, 4 and 5,
specifies which features are being used in the model. We explain the
meaning of the individual symbols as follows:

Q refers to the output of an LSTM applied to the question.
Spat refers to the spatial features of the prime object. It is a vector

of length 8, composed of different properties of the bounding box
associated with the prime object. It is defined as follows:

[xmin, xmax, ymin, ymax, xcenter, ycenter, wbox, hbox].

Cat refers to the category of the prime object. It is calculated by
evaluating the word embedding for the prime object’s category
using GloVe.

Objx,y refers to the concatenated outputs of the LSTMs applied
to the object sequences along X and Y axes separately. Using our
notation from Section 3.3, we can write Objx,y = Objx 1 Objy .

Objx,y,z refers to Objx 1 Objy 1 Objz . Here, Objz represents
the LSTM features for the object sequence along depth of the
image. Objz is calculated (approximately) by ordering the objects
using the sizes (area) of their bounding boxes.

Objx,y ↪→ Q and Objx,y,z ↪→ Q refer to Sequential type of
models as given in Eq. (4) and an extension to include object
sequences along Z axis respectively.

Q ↪→ Objx,y and Q ↪→ Objx,y,z refer to Sequential type of
models as given in Eq. (5) and an extension to include object
sequences along Z axis respectively.

[Prime–embed matrix] marker incorporates the prime object
information in the object sequences differently than by appending
a 0/1 bit to the object category vectors. Appending just a single
0/1 bit to 50× 1 dimensional categorical vector seems subopti-
mal. This marker provides the prime object information by using

IET Research Journals, pp. 1–9
c© The Institution of Engineering and Technology 2015 5

two embedding matrices M50×50 and W50×50. Categorical vec-
tors of non–prime objects are multiplied by embedding matrix M
and those of prime objects by W .
For example, consider the object sequences of Fig. 2; using the
notation (<category>, prime), these become:
#: 1 2 3 4 5
X: (<P>,0) (<P>,0) (,0) (<P>,1) (<F>,0)
Y: (<F>,0) (<P>,0) (<P>,0) (,0) (<P>,1)
Following the above described procedure, we would obtain:
X: (M<P>) (M<P>) (M) (W<P>) (M<F>)
Y: (M<F>) (M<P>) (M<P>) (M) (W<P>)
The resulting object sequences are processed as usual by an
LSTM. The matrices M and W are trainable parameters of the
model.

[Prime–embed biLSTM] marker incorporates prime information
by using a BiLSTM to process the object sequences, as explained
in the Section 3.2.
As an example, consider the first pair of object sequences given in
the previous marker. The BiLSTM would process these sequences
without the prime bit information and pick the outputs of the 4th

and the 5th BiLSTM cells for the object sequences along X axis
and Y axis respectively, as their encoded feature vectors.

[No prime] marker refers to the model in which the prime object
information is not encoded in the object sequences (contrary to
what is shown in Fig. 2). Thus, the object sequences reduce to a
list of objects arranged by their spatial coordinates in the image.

[No order] marker refers to the model in which the objects are
randomly arranged in the object sequence during each epoch.
This way, the object sequences reduce to a list of all the objects
in the image, along with the prime object, without any spatial
information.

[Non–prime zeros] marker refers to the model in which the object
sequences are formed by passing zero vectors (in place of the
corresponding word vectors) for non–prime objects. This way,
such a model lacks categorical information about all the non–
prime objects. Instead, it contains information about the number
of objects in the image, the category of the prime object and its
relative position amongst all the other objects present in the image.

[Non–prime rand] is similar to the model with [Non–prime zeros]
except that a random vector (with values in range [−1,+1]) is
passed instead of a zero vector for all the non–prime objects.

[Order Index] marker refers to the model in which the individual
elements of the object sequence also contain the index of each
object. Note that this index is different from the index mentioned
in the [Prime–embed biLSTM] marker. Here, the index serves as
a unique identifier for each object, whereas in the [Prime–embed
biLSTM], it serves to identify the position of prime object in the
sequence.
Again, consider the object sequences of Fig. 2, using the notation
(<category, index>, prime):
X: (<P,1>,0) (<P,2>,0) (<B,3>,0) (<P,4>,1) (<F,5>,0)
Y: (<F,5>,0) (<P,2>,0) (<P,1>,0) (<B,3>,0) (<P,4>,1)
We represent the index, in this marker, as a one–hot vector to make
it nominal (containing no inherent order). So, index 3 above would
actually be represented by [0, 0, 1, 0, 0]. Incorporating this infor-
mation makes it unambiguous, that which object is in what order
along the different axes, even in the case where multiple objects
belong to the same category (as is the case of <Person> in the
above example).

4.3.2 Discussion: Table 3 displays the performance of Con-
catenation models on the Oracle task. The first block in this table
considers models without object sequences. Q + Spat + Cat is
the baseline for the Oracle model [8]. From the accuracy of Q, we
can see that the database has a certain bias, due to which this model
is able to achieve an accuracy of greater than 50% solely from the
question. Further, we find that the Cat is a more important feature
than Spat.

Table 3 Accuracy results (in %) for different Concatenation models (refer
Section 3.3) on the Oracle task of GuessWhat. Training, Validation and Test
refer to the accuracy scores obtained on the respective splits of the GuessWhat
dataset.

Architecture (Concatenation) Training Validation Test

Q 60.7 59.6 59.9
Q + Spat 67.5 66.8 67.1
Q + Cat 77.3 75.0 75.1
Q + Spat + Cat [Baseline] 79.8 78.1 78.0

Q + Objx,y 83.2 78.9 78.6
Q + Objx,y [Prime–embed matrix] 83.0 79.1 78.9
Q + Objx,y [Prime–embed biLSTM] 82.2 79.0 78.8
Q + Objx,y [No prime] 65.9 63.9 64.2
Q + Objx,y [No order] 77.8 75.5 75.6
Q + Objx,y [Non–prime zeros] 80.4 77.2 77.2
Q + Objx,y [Non–prime rand] 80.6 78.4 78.2
Q + Objx,y [Order index] 80.2 76.4 76.1

Q + Objx,y,z 82.5 79.2 79.0
Q + Spat + Cat + Objx,y,z 77.3 76.4 76.2

Table 4 Accuracy results (in %) for different Dot models (refer Section 3.3) on
the Oracle task of GuessWhat. Training, Validation and Test refer to the accuracy
scores obtained on the respective splits of the GuessWhat dataset.

Architecture (Dot) Training Validation Test

Q + Objx,y 83.4 79.6 79.5
Q + Objx,y [Prime–embed matrix] 83.3 79.9 79.6
Q + Objx,y [Prime–embed biLSTM] 83.9 79.9 79.6
Q + Objx,y [No prime] 67.9 64.2 64.2
Q + Objx,y [No order] 78.1 75.9 76.1
Q + Objx,y [Non–prime rand] 82.4 79.2 79.1
Q + Objx,y [Order index] 82.5 79.5 79.5

Q + Objx,y,z 83.8 80.3 80.2
Q + Objx,y,z [Prime–embed matrix] 83.7 80.6 80.4
Q + Objx,y,z [Prime–embed biLSTM] 83.3 80.6 80.5

(Observed)
(Best)

Table 5 Accuracy results (in %) for different Sequential models (refer Section
3.3) on the Oracle task of GuessWhat. Training, Validation and Test refer to the
accuracy scores obtained on the respective splits of the GuessWhat dataset.

Architecture (Sequential) Training Validation Test

Objx,y ↪→ Q 82.4 79.1 79.2
Q ↪→ Objx,y 81.7 79.0 79.0

Objx,y,z ↪→ Q [Prime–embed biLSTM] 82.7 80.1 79.7
Q ↪→ Objx,y,z [Prime–embed biLSTM] 83.6 80.3 80.2

The second block in Table 3 displays results for the ablation
experiments on Object Sequences for concatenation models. We dis-
cuss the other models with respect to the base model of this block:
Q + Objx,y . This model incorporates the information about the
prime object using a 0/1 bit appended to object’s categorical word
vectors in the object sequences. On the other hand, [Prime–embed]
markers incorporate this information using other methods (using two
different embedding matrices for prime and non–prime object, and
the method of using a BiLSTM). This marker moves the prime object
information from feature level to the architecture level in the mod-
els. Models using these methods perform slightly better than the
Q + Objx,y model. Both [Prime–embed matrix] and [Prime–
embed biLSTM] achieve an almost similar accuracy. This shows
that both these methods, of incorporating the prime object infor-
mation, are equivalently good and better than appending a single
bit. Removing the information about the prime object from Object
Sequences results in a drastic drop of 14.4% in the test set accuracy

IET Research Journals, pp. 1–9
6 c© The Institution of Engineering and Technology 2015

as shown in [No prime]. This confirms that the knowledge of prime
object is very important. Next we see that randomly shuffling the
objects in the Object Sequences, results in a minor drop of 3.0% in
accuracy as shown in [No order]. This result is comparable to the
drop in accuracy from Q + Spat + Cat to Q + Cat in the first
block. We again infer from this, that the spatial information about
the objects is secondary to the performance on the Oracle task.

[Non–prime] markers show a negligible drop in accuracy (1.4%
and 0.4% in case of zeros and rand respectively). Models with
[Non–prime] markers retain both the spatial and the categorical
information about the prime object. They just lose the categorical
information about the non–prime objects. This implies that the mod-
els (embedding methods and the neural networks), we used, are
unable to learn to make an effective use of the extra information
about the category of these non–prime objects. Neither are the mod-
els powerful enough to make use of the extra information provided
by [Order index] marker.

Q + Objx,y,z model in the third block of Table 3 achieves the
best performance in this table, achieving an improvement of 0.4% in
accuracy over the base model of second block that lacks Objz . This
shows that depth information (or equivalently information about
object sizes) is useful in answering questions about them.

Table 4 shows the results for similar ablation experiments on
Object Sequences for dot models. All the markers behave similarly
in this table as they did for concatenation models. Thus, this table re–
confirms our earlier findings about the importance of different parts
of the Object Sequences. Though, in this table we see that [Order
index] performs comparably to the base model Q + Objx,y,z
[Dot]. We also observe that the Dot models outperform their cor-
responding Concatenation models. This leads us to conclude that
Dot embedding is definitely better than Concatenation embedding,
possibly due to its non–linear nature.

Table 5 shows the results of applying [Prime–embed biLSTM]
to both the sequential models. We find that using a BiLSTM to
encode prime objects improves upon the accuracy of the respective
base models, more so in Q ↪→ Objx,y,z model.

Finally, we see that our best performing model Q + Objx,y,z
[Dot] [Prime–embed biLSTM] obtained an accuracy of 80.5% on
the test set, as compared to the baseline Q + Spat + Cat [Con-
catenation], for the Oracle model in [8], which achieved 78.0% on
the test set.

4.3.3 Error Analysis: In this section, we make a qualitative
study of our best performing model (Q + Objx,y,z [Dot] [Prime–
embed biLSTM]) and the baseline (Q + Spat + Cat [Concate-
nation]) on the Oracle task of GuessWhat using the validation
split.

The validation split consists of 113,748 instances. We divide these
instances into eight classes based on:

(actual answer, model prediction, baseline prediction).
For example the (N, Y, N) class would consist of questions

for which the correct answer is No, our model predicts Yes and the
baseline model predicts No. We then sample hundred examples each
from these eight classes at random and manually categorize each of
these examples into one of three types:

Object: Questions that should be easily answered using just the
prime object’s category.

Property: Questions that would require image properties and would
be difficult for our model to answer; like “Is it facing left?”.

Location: Questions that require spatial reasoning and its associa-
tion with actions between different objects. We expect our model
to perform well on such questions, given the structure of object
sequences.

Table 6 Explanation: Left portion of the table shows the count
of the eight classes. The columns ‘Answer’, ‘Model’ and ‘Base-
line’ represent the actual answers and model predictions respectively
(with N–No and Y–Yes). This portion also shows the division of hun-
dred samples of each class into Object, Property and Location. The
right portion of the table gives some question instances for each of
the eight classes. ‘Object Sequences’ column gives just the relevant

object sequences for that problem (although the model uses all three
object sequences along X , Y and Z axes).

As shown in the left portion of Table 6, the category of questions
being solved correctly by both the baseline and our model pre-
dominantly consist of Object type questions, whereas questions that
have been incorrectly answered by both the models consist a major
portion of Property type questions. This shows that the object’s
visual properties constitute important features that can be included in
object sequences to improve their performance. Questions, that our
proposed model answers correctly and the baseline answers incor-
rectly, have a higher number of Location type questions. Thus, object
sequences are able to utilize the spatial information from the images.
Cases, where the “baseline is able to answer Location and Property
type questions” or “our model is able to answer Property type ques-
tions”, indicate dataset biases. In such questions, the models exploit
these biases instead of using visual information from the image.

Right portion of Table 6 and Figure 6 show illustrative examples
from each of the eight classes described above. From these examples,
we again see that our model can benefit by having access to object’s
visual properties and the background of the image. Other deficien-
cies of the model represent deeper problems: like acquiring common
world knowledge, linking position in object sequences to actions
between objects or reducing dataset bias (i.e. using pure visual infor-
mation to answer questions). One way to tackle this is to use larger
datasets, clever splitting of the dataset [19] and employ models that
transfer knowledge from multiple domains into this task (similar to
using GloVe vectors [24] or ImageNet [28] trained ResNet features
[1]). Other ways can be to incorporate attention mechanisms or use
dynamic memory networks [29] that allow models to revisit their
states and thereby reason better.

4.3.4 Further Remarks: Object Sequences, in a manner,
search over the list of objects for the most relevant informa-
tion using an LSTM, either with the question information (as in
SequentialQ↪→Objx,y

model) or without it. This search over objects
can be made more efficient and task focused by using attention
mechanisms.

There are multiple ways to use attention mechanisms with object
sequences. One way is to use attention while extracting object fea-
tures, such as bottom–up attention driven feature extractors [16].
Another way to use attention is just before applying the LSTM on
object sequences: such as to replace the attention weighted sum over
object features in VQA model [16] with the object sequence LSTM
operating on attention weighted object features. Since our approach
allows an image to be represented as a sequence, attention mecha-
nism can also be applied just after the LSTM has processed object
sequences. An example of this approach is using content–based neu-
ral attention [18] on the object sequence, after it has been processed
by a BiLSTM, during the decoding stage of an image captioning
problem or while modeling the Questioner of GuessWhat.

The current implementation of Object Sequences focuses pri-
marily on the spatial correlation between the different objects, and
ignores the visual properties of the individual objects themselves.
This problem may be alleviated by incorporating the FC features
extracted by the RCNN for individual objects’ bounding boxes.
Also, object sequences are inherently limited by the effectiveness of
the object detector used to create them. Overall, we find that Object
Sequences work well in obtaining a representation of the visual (cat-
egorical and spatial) information about different objects present in
the image, as shown in Section 4.3.3.

5 Conclusions

Visual Question Answering is a holistic task that combines two
different modalities. For a system to be able to give competitive per-
formance on this task, it needs to effectively encode and utilize both
the visual and language based information. In this paper we proposed
Object Sequences, a simple and effective approach for encoding
the visual (categorical and spatial) information about all the objects
present in an image. This encoding, in form of a sequence, can be
readily fed into a neural network architecture. We then considered

IET Research Journals, pp. 1–9
c© The Institution of Engineering and Technology 2015 7

Table 6 Examples of performance of the baseline model and our best model on Oracle task of GuessWhat. The ‘Type’ column refers to categorization of questions
into Object, Property or Location. In the ‘Object Sequences’ column, bold object represents the prime object of that sequence. (refer Table Explanation 4.3.3.)

A
ns

w
er

M
od

el
B

as
el

in
e

C
ou

nt
%

(1
13

74
8)

O
bj

ec
t

P
ro

pe
rt

y

Lo
ca

tio
n EXAMPLES

Fi
gu

re

Ty
peS. # Question Object Sequences Remarks

N Y Y 4.8 19 47 34

1. Is it car? X: Truck Truck Truck – O Truck and Car are semantically close.
2. Is the horse eating? X: Horse Horse Horse 6a P Needs more visual information to answer this.

3. Person using it? X: Kite Person Snowboard 6b L Person and Kite are close in ObjSeq.
Y: Kite Person Snowboard

Y N N 6.8 12 53 35
4. Is it attached to wall? X: Toilet Cup Sink Bed 6c L Model lacks background information.
5. Is it food? X: Hot Dog Hot Dog Hot Dog – O Lacking common sense knowledge.

N Y N 4.2 8 60 32

6. Snowboard? X: Kite Person Snowboard 6b O Clear misclassification
7. Is it facing left? X: C C C C C C C – P ‘C’ is for cow. Baseline is coincidentally correct.
8. Is it on right side of picture? X: Chair Clock Sink P Scissors P P 6d L ‘P’ is for person. Scissors lie on right in ObjSeq.

Y N Y 3.6 15 45 40
9. Is he near to the car? X: P P P P P Car P Remote Car P – L ‘P’ is for person. Clear misclassification.

10. Is object a computer monitor? X: TV TV Laptop K M Cup K M TV – O ‘K’ is for keyboard and ‘M’ is for mouse.

N N Y 4.6 17 34 49
11. Is the person on skateboard? X: P S P P S S P S P P P 6e L ‘P’ is for person and ‘S’ for skateboard.

Y: P P P P P P P S S S S
12. Is it the rightmost animal? X: Cow Cow Cow 6f L –

Y Y N 5.6 24 32 44

13. On the surfboard? X: Surfboard Person Person – L –
Y: Person Person Surfboard

14. Is it a short piece? Z: C C C C C C C Fork Bowl 6g L Prime object comes first in ObjSeqz.
15. Is it black? X: Person Chair Chair 6h P Model is coincidentally correct.
16. 2nd from left? X: E E E E E E E E E E E Car Truck 6i L ‘E’ stands for elephant.

N N N 39.9 60 23 17
17. Is it the whole bus? X: Car Bus Person Person – O –
18. Is it edible? X: S Dining Table S Cup Cup – O ‘S’ stands for sandwich.

Y Y Y 30.5 66 16 18
19. On the left? X: Car Clock Car Car Car – L –
20. Is it made of wood? X: Banana Dining Table Banana – O Correctly acquired common sense knowledge.

various techniques for obtaining a joint visual–language embedding,
out of which we found that the embedding formed by taking the
element–wise product of visual and textual features gave the best
results. We also conducted detailed experiments to understand the
relative importance of the constituent features used to form the object
sequences, on the Oracle task of the GuessWhat dataset. For solv-
ing the Oracle task, we observed that the prime object information
was of highest importance, followed by spatial location of the prime
object. The visual information about the other objects was of least
importance. Finally, we benchmarked the performance of the Object
Sequence based neural network architecture against the baseline for
the Oracle model. Our best model outperformed the baseline.

6 Acknowledgment

We would like to thank the anonymous reviewers and the Editor for
their insightful comments.

7 References
1 He, K., Zhang, X., Ren, S., Sun, J. ‘Deep residual learning for image recognition.’

In 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2016, Las Vegas, NV, USA, June 27-30, 2016 (2016) pp. 770–778

2 Ren, S., He, K., Girshick, R.B., Sun, J. ‘Faster R-CNN: towards real-time object
detection with region proposal networks.’ IEEE Trans. Pattern Anal. Mach. Intell.,
2017. 39(6), pp. 1137–1149

3 Garcia-Garcia, A., Orts-Escolano, S., Oprea, S., Villena-Martinez, V., Rodríguez,
J.G. ‘A review on deep learning techniques applied to semantic segmentation.’
CoRR, 2017. abs/1704.06857

4 Plummer, B.A., Wang, L., Cervantes, C.M., Caicedo, J.C., Hockenmaier, J., Lazeb-
nik, S. ‘Flickr30k entities: Collecting region-to-phrase correspondences for richer
image-to-sentence models.’ International Journal of Computer Vision, 2017.
123(1), pp. 74–93

5 Lin, T., Maire, M., Belongie, S.J., et al. ‘Microsoft COCO: common objects in
context.’ In Computer Vision - ECCV 2014 - 13th European Conference, Zurich,
Switzerland, September 6-12, 2014, Proceedings, Part V (2014) pp. 740–755

6 Karpathy, A., Fei-Fei, L. ‘Deep visual-semantic alignments for generating image
descriptions.’ IEEE Trans. Pattern Anal. Mach. Intell., 2017. 39(4), pp. 664–676

7 Malinowski, M., Fritz, M. ‘A multi-world approach to question answering about
real-world scenes based on uncertain input.’ In Advances in Neural Information
Processing Systems 27: Annual Conference on Neural Information Processing
Systems 2014, December 8-13 2014, Montreal, Quebec, Canada (2014) pp.
1682–1690

8 de Vries, H., Strub, F., Chandar, S., Pietquin, O., Larochelle, H., Courville, A.C.
‘Guesswhat?! visual object discovery through multi-modal dialogue.’ In 2017
IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017,
Honolulu, HI, USA, July 21-26, 2017 (2017) pp. 4466–4475

9 Malinowski, M., Fritz, M. ‘Towards a visual turing challenge.’ CoRR, 2014.
abs/1410.8027

10 Silberman, N., Hoiem, D., Kohli, P., Fergus, R. ‘Indoor segmentation and support
inference from RGBD images.’ In Computer Vision - ECCV 2012 - 12th European
Conference on Computer Vision, Florence, Italy, October 7-13, 2012, Proceedings,
Part V (2012) pp. 746–760

11 Malinowski, M., Rohrbach, M., Fritz, M. ‘Ask your neurons: A deep learning
approach to visual question answering.’ International Journal of Computer Vision,
2017. 125(1-3), pp. 110–135

12 Hochreiter, S., Schmidhuber, J. ‘LSTM can solve hard long time lag problems.’ In
Advances in Neural Information Processing Systems 9, NIPS, Denver, CO, USA,
December 2-5, 1996 (1996) pp. 473–479

13 Agrawal, A., Lu, J., Antol, S., et al. ‘VQA: visual question answering -
www.visualqa.org.’ International Journal of Computer Vision, 2017. 123(1), pp.
4–31

14 Goyal, Y., Khot, T., Summers-Stay, D., Batra, D., Parikh, D. ‘Making the V in
VQA matter: Elevating the role of image understanding in visual question answer-
ing.’ In 2017 IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2017, Honolulu, HI, USA, July 21-26, 2017 (2017) pp. 6325–6334

15 Teney, D., Anderson, P., He, X., van den Hengel, A. ‘Tips and tricks for
visual question answering: Learnings from the 2017 challenge.’ CoRR, 2017.
abs/1708.02711

16 Anderson, P., He, X., Buehler, C., et al. ‘Bottom-up and top-down attention for
image captioning and VQA.’ CoRR, 2017. abs/1707.07998

17 Xu, K., Ba, J., Kiros, R., et al. ‘Show, attend and tell: Neural image caption
generation with visual attention.’ In Proceedings of the 32nd International Confer-
ence on Machine Learning, ICML 2015, Lille, France, 6-11 July 2015 (2015) pp.
2048–2057

18 Bahdanau, D., Cho, K., Bengio, Y. ‘Neural machine translation by jointly learning
to align and translate.’ CoRR, 2014. abs/1409.0473

19 Agrawal, A., Batra, D., Parikh, D., Kembhavi, A. ‘Don’t just assume; look and
answer: Overcoming priors for visual question answering.’ In SUNw: Scene
Understanding Workshop, CVPR – 2017 (2017)

20 Krishna, R., Zhu, Y., Groth, O., et al. ‘Visual genome: Connecting language
and vision using crowdsourced dense image annotations.’ International Journal
of Computer Vision, 2017. 123(1), pp. 32–73

IET Research Journals, pp. 1–9
8 c© The Institution of Engineering and Technology 2015

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 6: Images corresponding to some of the examples given in Table 6. The green bounding boxes mark the prime objects.

21 de Vries, H., Strub, F., Mary, J., Larochelle, H., Pietquin, O., Courville, A.C.
‘Modulating early visual processing by language.’ In Advances in Neural Informa-
tion Processing Systems 30: Annual Conference on Neural Information Processing
Systems 2017, 4-9 December 2017, Long Beach, CA, USA (2017) pp. 6597–6607

22 Strub, F., de Vries, H., Mary, J., Piot, B., Courville, A.C., Pietquin, O. ‘End-to-end
optimization of goal-driven and visually grounded dialogue systems.’ In Proceed-
ings of the Twenty-Sixth International Joint Conference on Artificial Intelligence,
IJCAI 2017, Melbourne, Australia, August 19-25, 2017 (2017) pp. 2765–2771

23 Simonyan, K., Zisserman, A. ‘Very deep convolutional networks for large-scale
image recognition.’ CoRR, 2014. abs/1409.1556

24 Pennington, J., Socher, R., Manning, C.D. ‘Glove: Global vectors for word rep-
resentation.’ In Proceedings of the 2014 Conference on Empirical Methods in
Natural Language Processing, EMNLP 2014, October 25-29, 2014, Doha, Qatar,
A meeting of SIGDAT, a Special Interest Group of the ACL (2014) pp. 1532–1543

25 Schuster, M., Paliwal, K.K. ‘Bidirectional recurrent neural networks.’ IEEE Trans.
Signal Processing, 1997. 45(11), pp. 2673–2681

26 Kingma, D.P., Ba, J. ‘Adam: A method for stochastic optimization.’ CoRR, 2014.
abs/1412.6980

27 Paszke, A., Gross, S., Chintala, S., et al. ‘Automatic differentiation in pytorch.’ In
Autodiff Workshop, NIPS (2017)

28 Russakovsky, O., Deng, J., Su, H., et al. ‘Imagenet large scale visual recognition
challenge.’ International Journal of Computer Vision, 2015. 115(3), pp. 211–252

29 Xiong, C., Merity, S., Socher, R. ‘Dynamic memory networks for visual and tex-
tual question answering.’ In Proceedings of the 33nd International Conference
on Machine Learning, ICML 2016, New York City, NY, USA, June 19-24, 2016
(2016) pp. 2397–2406

IET Research Journals, pp. 1–9
c© The Institution of Engineering and Technology 2015 9

