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1 Concentration Inequalities

This section very closely follows Chapter 5 of [2]. Also, I highly recommend reading [1] for a more in depth
survey of modern concentration inequalities. Now let’s introduce some important notation and assumptions!

1.1 Tail Probabilities

Suppose that X1, X2, ..., Xn is a sequence of independent and identically distributed (i.i.d) random variables,
and assume that the mean µ = E [] [X] and variance σ2 = V[X] exist. Having observed X1, X2, ..., Xn we
would like to estimate the common mean µ (this is very important in the multi-armed bandit problem as in
this problem setting we are only concerned with the optimal-action which is just pulling the arm with the
highest mean). The most natural estimator is

µ̂ =
1

n

n∑
i=1

Xi,

which is called the sample mean or empirical mean. Linearity of expectation shows that E[µ̂] = µ, which
means that µ̂ is an unbiased estimator of µ. How far from µ do we expect µ̂ to be? A simple measure
of the spread of the distribution of a random variable Z is its variance, V[Z] = E[(Z − E[Z])2]. A quick
calculation using independence shows that

V[µ̂] = E[(µ̂− µ)2] =
σ2

n
, (1)

which means that we expect the squared distance between µ and µ̂ to shrink as n grows large at a rate of
1/n and scale linearly with the variance of X. While the expected squared error is important, it does not
tell us very much about the distribution of the error. To do this we usually analyse the probability that µ̂
overestimates or underestimates µ by more than some value ε > 0. Precisely, how do the following quantities
depend on ε?

P(µ̂ ≥ µ+ ε) and P(µ̂ ≥ µ− ε).

The expression above are called the tail probabilities of µ̂ − µ. Specifically, the first is called the upper
tail probability and the second is called the lower tail probability.

1.2 The Inequalities of Markov and Chebyshev

The most straightforward way to bound the tails is by using Chebyshev’s inequality, which is itself a corollary
of Markov’s inequality. The latter is one of the golden hammers of probability theory, and so we include it
for the sake of completeness.

Lemma 1.1. For any random variable X and ε > 0, the following holds:

1. (Markov): P(|X| ≥ ε) ≤ E[|X|]
ε

2. (Chevyshev): P(|X − E[X]| ≥ ε) ≤ V[X]
ε2

Proof We only prove Markov’s inequality, the proof for Chebyshev’s inequality is left to the reader

E[X] =

∫ ∞
0

xp(x)dx =

∫ ε

0

xp(x)dx+

∫ ∞
ε

xp(x)dx

≥
∫ ∞
ε

xp(x)dx ≥ ε
∫ ∞
ε

p(x)dx = εP(X > ε)
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By combining 1 with Chebyshev’s inequality, we can bound the two-sided tail directly in the terms of
the variance by

P(|µ̂− µ| ≥ ε) ≤ σ2

nε2
(2)

This result is nice because it was so easily bought and relied on no assumptions other than the existence of
the mean and variance. The downside is that when X is well behaved, the inequality is rather loose. By
assuming that higher moments of X exist, Chebyshev’s inequality can be improved by applying Markov’s
inequality to |µ̂−µ|k, with the positive integer k to be chosen so that the resulting bound is optimised. This
can be a bit cumbersome, and thus we present the continuous analog of this, known as the Cramer-Chernoff
method.
To calibrate our expectations on what improvement to expect relative to Chebyshev’s inequality, let us
start by recalling the central limit theorem (CLT). Let Sn =

∑n
t=1(Xt − µ). The CLT says that under no

additional assumptions than the existance of variance, the limiting distribution of Sn/(
√
nσ2) as n→∞ is

the standard normal distribution. If Z ∼ N (0, 1), then

P(Z ≥ u) =

∫ ∞
u

1√
2π

exp

(
−x

2

2

)
dx

The integral has no closed-form solution, but is easy to bound:∫ ∞
u

1√
2π

exp

(
−x

2

2

)
dx ≤ 1

u
√

2π

∫ ∞
u

x exp

(
−x

2

2

)
dx (3)

=

√
1

2πu2
exp

(
−u

2

2

)
(4)

which gives

P(µ̂ ≥ µ+ ε) = P
(
Sn/
√
σ2n ≥ ε

√
n

σ2

)
≈ P

(
Z ≥ ε

√
n

σ2

)
(5)

≤
√

σ2

2πnε2
exp

(
−nε

2

2σ2

)
(6)

This is usually much smaller than what we obtained with Chebyshev’s inequality (Exercise 5.3). In particu-
lar, the bound on the right-hand side of (5.4) decays slightly faster than the negative exponential of nε2/σ2,
which means that µ̂ rapid concentrates around its mean.

The asymptotic nature of the CLT makes it unsuitable for designing bandit algorithms. As an approxi-
mation for a finite number of observations, it provides a reasonable approximation only when close to the
peak of the normal distribution; it requires a very large number of observations to stretch into the tails. In
the next section, we derive finite-time analogs, which are only possible by making additional assumptions.

1.3 The Cramer Chernoff Method and Subgaussian Random Variables

For the sake of moving rapidly towards bandits, we start with a straightforward and relatively fundamental
assumption on the distribution of X, known as the subgaussian assumption.

Definition 1.1. (Subgaussianity). A random variable X is σ-subgaussian if for all λ ∈ R, it holds that
E[exp(λX)] ≤ exp(λ2σ2/2).
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An alternative way to express the subgaussianity condition uses the moment- generating function of X,
which is a function MX : R → R defined by MX(λ) = E[exp(λX)]. The condition in the definition can be
written as

ψX(λ) = logMX(λ) ≤ 1

2
λ2σ2

for all λ ∈ R. The function ψX is called the cumulant-generating function. It is not hard to see that MX need
not exist for all random variables over the whole range of real numbers. For example, if X is exponentially
distributed and λ ≥ 1, then

E[exp(λX)] =

∫ ∞
0

exp(−x)× exp(λx)dx =∞

The moment-generating function of X ∼ N (0, σ2) satisfies MX(λ) = exp(2σ2/2), and so X is σ-subgaussian
The following theorem explains the origin of the term ‘subgaussian’. The tails of a σ-subgaussian random
variable decay approximately as fast as that of a Gaussian with zero mean and the same variance.

Theorem 1.2. If X is σ-subgaussian, then for any ε ≥ 0,

P(X ≥ ε) ≤ exp

(
ε2

2σ2

)
(7)

Proof We take a generic approach called the Cramer–Chernoff method. Let λ > 0 be some constant to
be tuned later. Then

P(X ≥ ε) = P(exp(λX) ≥ exp(λε)) ≤ E[exp(λX)]

exp(λε)
by Markov’s Inequality

≤ exp

(
λ2σ2

2
− λε

)
Defn. of subgaussianity

Choosing λ = ε/σ2 completes the proof.

A similar inequality holds for the left tail. By using the union bound P(A∪B) ≤ P(A) + P(B), we also find
that P(|X| ≤ ε) ≤ 2 exp(−ε2/(2σ2))). An equivalent form of these bounds is

P
(
X ≥

√
2σ2 log(1/δ)

)
≤ δ and P

(
|X| ≥

√
2σ2 log(2/δ)

)
≤ δ

This form is often more convenient and especially the latter, which for small δ shows that with overwhelming
probability X takes values in the interval(

−
√

2σ2 log(2/δ),
√

2σ2 log(2/δ)
)

To study the behavior of µ̂− µ, we need one more lemma.

Lemma 1.3. Suppose that X is σ-subgaussian with X1 and X2 are independent and σ1 and σ2-subgaussian,
respectively, then:

1. E[X] = 0 and V[X] ≤ σ2.

2. cX is |c|σ-subgaussian for all c ∈ R.

3. X1 +X2 is
√
σ2
1 + σ2

2-subgassian

The proof of this lemma is left to the reader, however, both 2 and 3 follow from the Taylor expansion of
ex. Combining Lemma 1.3 and Theorem 1.2 leads to a straightforward bound on the tails of µ̂− µ.
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Corollary 1.4. Assume that Xi−µ are independent, σ-subgaussian random variables. Then for any ε ≥ 0,

P(µ̂ ≥ µ+ ε) ≤ exp

(
−nε

2

2σ2

)
and P(µ̂ ≤ µ− ε) ≤ exp

(
−nε

2

2σ2

)
,

where µ̂ = 1
n

∑n
t=1Xt.

Proof By Lemma 1.3, it holds that µ̂−µ =
∑n

i=1(Xi−µ)/n is σ/
√
n-subgaussian. Then apply Theorem

1.2

For x > 0, it holds that exp(−x) ≤ 1/(ex), which shows that the above inequality is stronger than what we
obtained via Chevyshev’s inequality except when ε is very small. It is exponentially smaller if nε2 is large
relative to σ2. The deviation form of the above results says that under the conditions of the result, for any
δ ∈ [0, 1], with probability 1− δ,

µ ≤ µ̂+

√
2σ2 log(1/δ)

n
(8)

Symmetrically, it also follows that with probability at least 1− δ,

µ ≥ µ̂−
√

2σ2 log(1/δ)

n
(9)

Again, one can use a union bound to derive a two-sided inequality. Now we are ready to construct an online
learning algorithm!

2 UCB for Multi-Armed Bandits

This section closely follows the first part of Chapter 7 in [2]. Using the bounds we constructed in Equations 8
and 9, we can construct a good algorithm for solving the multi-armed bandit problem. Now let’s informally
define the multi-armed bandit problem, more a more formal definition of the multi-armed bandit problem
read Chapters 4 and 6 of [2] or chapter 2 of [4]. Let the multi-armed bandit problem be informally defined
as follows:

1. The number of actions, also called arms, is denoted by a natural number k.

2. For simplicity, we assume all multi-armed bandit instances are 1-subgaussian in this talk.

3. Each arm has a mean, µi for i ∈ [k], and when the arm is pulled, a reward Xt ∼ N (µi, 1) is observed, for
t ∈ [n] where n is the horizon or the length an agent interacts with the multi-armed bandit environment.

4. The objective is to minimize the regret when interacting with a bandit environment, the regret is
defined as follows, Rn =

∑n
t=1 ∆iE[Ti(n)] where ∆i = µ∗−µi, µ

∗ = maxi(µi), and Ti(n) is the number
of times each arm was pulled.

The goal here is to minimize the regret which is equivalent to maximizing the number of times the optimal
arm is pulled. So for each arm, i, we have a stream of data Xi

1, X
i
2, ..., X

i
t and using this observed data we

would like learn µi in order to determine with high probability which arm is the best arm? Before we do
this let us talk about optimism.

2.1 Optimism in the Face of Uncertainty

The UCB algorithm is based on the principle of optimism in the face of uncertainty, which states that one
should act as if the environment is as nice as plausibly possible. As we shall see in later chapters, the
principle is applicable beyond the finite-armed stochastic bandit problem.
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Imagine visiting a new country and making a choice between sampling the local cuisine or visiting a well-
known multinational chain. Taking an optimistic view of the unknown local cuisine leads to exploration
because without data, it could be amazing. After trying the new option a few times, you can update your
statistics and make a more informed decision. On the other hand, taking a pessimistic view of the new option
discourages exploration, and you may suffer significant regret if the local options are delicious. Just how
optimistic you should be is a difficult decision, which we explore for the rest of the chapter in the context of
finite-armed bandits.

For bandits, the optimism principle means using the data observed so far to assign to each arm a value,
called the upper confidence bound that with high probability is an overestimate of the unknown mean. The
intuitive reason why this leads to sublinear regret is simple. Assuming the upper confidence bound assigned
to the optimal arm is indeed an overestimate, then another arm can only be played if its upper confidence
bound is larger than that of the optimal arm, which in turn is larger than the mean of the optimal arm. And
yet this cannot happen too often because the additional data provided by playing a suboptimal arm means
that the upper confidence bound for this arm will eventually fall below that of the optimal arm.

In order to make this argument more precise, we need to define the upper confidence bound. LetX1, X2, ..., Xn

be a sequence of independent 1-subgaussian random variables with mean µ and µ̂ = 1
n

∑n
t=1Xt by Equation

8,

P

(
µ ≥ µ̂+

√
2 log(1/δ)

n

)
≤ δ for all δ ∈ (0, 1) (10)

When considering its options in round t, the agent has observed Ti(t − 1) samples of arm i and received
rewards from that arm with an empirical mean of µ̂i(t − 1). Then a reasonable candidate for ”as large as
plausibly possible” for the unknown mean of the ith arm is

UCBi(t− 1, δ) =


∞, if Ti(t− 1) = 0 (11)

µ̂i(t− 1) +

√
2 log(1/δ

Ti(t− 1)
, otherwise (12)

Great care is required when comparing 10 and 11 because in the former the number of samples is the constant
n, but in the latter it is a random variable Ti(t − 1). By and large, however, this is merely an annoying
technicality, and the intuition remains that δ is approximately an upper bound on the probability of the
event that the above quantity is an underestimate of the true mean.

The value inside the argmax is called the index of arm i. Generally speaking, an index algorithm chooses
the arm in each round that maximises some value (the index), which usually only depends on the current
time step and the samples from that arm. In the case of UCB, the index is the sum of the empirical mean
of rewards experienced so far and the exploration bonus, which is also known as the confidence width.

Besides the slightly vague ‘optimism guarantees optimality or learning’ intuition we gave before, it is worth
exploring other intuitions for the choice of index. At a very basic level, an algorithm should explore arms
more often if they are (a) promising because µ̂i(t − 1) is large or (b) not well explored because Ti(t − 1)
is small. As one can plainly see, the definition in Eq. 11 exhibits this behaviour. This explanation is not
completely satisfying, however, because it does not explain why the form of the functions is just so.
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