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Q–Value Iteration Convergence: But what the @#$% does it mean?

� V π(k) ≥ V ∗ − �� for k ≥ 1
1−γ log

�
2

�(1−γ)

�
.

� This rate is pretty good! Look at this:

Precision � #(iter)

1 0.1 1.5× 106

2 0.01 1.7× 106

3 0.001 1.9× 106

4 0.0001 2.1× 106

� This rate is effectively linear in the precision of the value function!

� Think of precision as being log
�
1
�
�
�
.

� But this is NOT the sample based update. In practice, we know neither of r and
P . The rate for the sample based update would be much worse.



Playing with the Rooftop MDP
� Example calculation from last time:

Qπ = (1− γ)(I − γPπ)−1r

= (1− 0.9)
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� Define πQ(s) := argmaxa∈AQ(s, a).

� Define VQ(s) := maxa∈AQ(s, a).
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Figure: (Rooftop)
MDP.



Playing with the Rooftop MDP: Value Iteration
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Figure: V π
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Figure: Q–value iteration.

Q∗ =
�
0.29 0.32 0.27

��
.



Note about Bellman Operator T π, Bellman Optimality Operator T , and 3
types of P matrices



Policy Iteration
� Begin with a policy π(0)

� Policy Evaluation: Find Qπ(k)
; say, by using Qπ = (1− γ)(I − γPπ(k)

)−1r .
� Policy Improvement: Calculate π(k+1) = π

Qπ(k) .

� Convergence: For k ≥ 1
1−γ log

�
1
�
�
�

Qπk ≥ Q∗ − �.

� I think we need to combine this with the (Singh & Yee, 1994) equation.



(Part 1) Policy Iteration: Convergence Proof

� Qπk+1 ≥ T Qπk ≥ Qπk .



(Part 2) Policy Iteration: Convergence Proof

� Qπk+1 ≥ T Qπk ≥ Qπk .



(Part 3) Policy Iteration: Convergence Proof

� �Qπk+1 − Q∗�∞ ≤ γ�Qπk − Q∗�∞.



(Final Part) Policy Iteration: Convergence Proof

�

� How would we show that Generalized Policy Iteration converges?



Complete Space of Policies

� We define the policy as π : S → Δ(A). This is a stationary markov policy.

� A deterministic stationary markov policy would be defined as π : S → A.

� A general policy (possible non–deterministic, non–stationary, and non–markov)
would be defined as π : H → Δ(A), where H is the set of all trajectories.

� Is is even possible to assume the optimal policy to be stationary and
deterministic?



(Part 1) Existence of a Stationary and Deterministic Optimal Policy
� Let Π be the set of all non–stationary and randomized policies. There exists a

stationary and deterministic policy π such that for all states s ∈ S,
V π(s) = max

π�∈Π
V π�

(s).

� Note: I did not understand what randomized means.



(Part 2) Existence of a Stationary and Deterministic Optimal Policy

�



(Part 1) Fixed Point of Q = T Q
� Define optimal Q∗ by Q∗(s, a) = maxπ∈ΠQπ(s, a). Then Q = Q∗ if and only if it

satisfies
Q = T Q.



(Part 2) Fixed Point of Q = T Q

�



Summary

� Value iteration

� Policy iteration

� Bellman Operator and Bellman Optimality Operator

� 3 types of transition matrices

� Existence of a stationary and deterministic optimal policy

� Fixed point of Q = T Q

� Did NOT cover the LP formulation (next time)


