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@-Value Iteration Convergence: But what the @#%% does it mean?
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> This rate is effectively linear in the precision of the value function!

» Think of precision as being
R doy( Ve

» But this is NOT the sample based update. In practice, we know neither of r and
P. The rate for the sample based update would be much worse.



Playing with the Rooftop MDP s —

» Example calculation from last time:
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» Define mg(s) := arg maxaea Q(s, a). Q* <gl , 41,)

» Define Vg(s) := maxaeq Q(s, a).



Playing with the Rooftop MDP: Value lteration
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Note about Bellman Operator 77, Bellman Optimality Operator 7, and 3
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olicy lteration
» Begin with a poIicylr/(/(E

Policy Evaluation: Find ; say, by using Q" = E==29)(/ - ~ P )1y,

» Policy Improvement: Calculate
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> Convergence: For k > 11 log (1/e) *® %
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» | think we need to combine this with the (Singh & Yee, 1994) equation.




(Part 1) Policy Iteration: Convergence Proof {:\/Q(s,)]
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(Part 2) Policy Iteratigm nce Proof
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(Part 3) Policy Iteration: Convergence Proof
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(Final Part) Policy Iteration: Convergence
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» How enerallzed Policy Iteration converges?




Complete Space of Policies

» We define the policy as 7 : S — A(.A). This is a stationary markov policy.
» A deterministic stationary markov policy would be defined as 7: S — A.

» A general policy (possible non—deterministic, non—stationary, and non—markov)
would be defined as 7 : H — A(A), where H is the set of all trajectories.

> Is is even possible to assume the optimal policy to be stationary and
deterministic?



(Part 1) Existence of a Stationary and Deterministic Optimal Policy

> Let I be the set of all non—stationary and randomized policies. There exists a
stationary and deterministic policy 7 such that for all states s € S,

V™(s) = max V™ (s).
7€l

» Note: | did not understand what randomized means.



(Part 2) Existence of a Stationary and Deterministic Optimal Policy



(Part 1) Fixed Point of @ =T Q

» Define optimal Q* by Q*(s,a) = max;en Q7 (s,a). Then Q = Q* if and only if it
satisfies

R=TQ.



(Part 2) Fixed Point of @ =T Q



Summary

» Value iteration

» Policy iteration

» Bellman Operator and Bellman Optimality Operator

> 3 types of transition matrices

» Existence of a stationary and deterministic optimal policy
» Fixed point of @ = T Q

» Did NOT cover the LP formulation (next time)



